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Relation between stable orbits and quantum transmission resonance in ballistic cavities

Y. Takagaki and K. H. Ploog
Paul-Drude-Institut fu¨r Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin, Germany

~Received 30 March 2000!

Classical and quantum-mechanical transport properties in chaotic cavities are investigated to establish a link
between them. Because of the stickiness at the boundary between stochastic seas and islands of regular orbits
in phase space, classical trajectories spend a long time in the vicinity of a few regular orbits. The trapping
results in an exclusive excitation of these stable orbits even when the cavity is terminated by classical leads.
The wave-function pattern at quantum transmission resonances is found to be identical with one of the stable
orbits. The correspondence implies that the transmission resonance takes place when the stable orbit satisfies
Bohr and Sommerfeld’s quantization rule, and hence explains why conductance fluctuations in ballistic cavities
contain only several frequency components.

PACS number~s!: 05.45.Pq, 73.20.Dx, 73.23.Ad
or
nc
te
c
.

e
un

d

il
m

ns

ty

th

on
g
a
he
o

th
ay
h
tu

ris
t
m

iod
b

n
h
h
m

ly
tion

gu-
of

ion
se
the
ely,
all

n
e
abil-
t-

ally
ron
lic
cal
e-
n-
ld,

can
rlike
oth-
ing

es
mi-
ith
indi-
ctly

all
its
at

y.
er
One of the striking features of the quantum transp
properties in microstructures is the transmission resona
When the Fermi energyEF coincides with a quasibound sta
level in a cavity, the conductance is suppressed or enhan
or exhibits both effects with a narrow energy separation
the cavity size is comparable to the Fermi wavelengthlF ,
the probability densityuc(r )u2 at the transmission resonanc
exhibits a simple standing wave pattern. As the quasibo
states originate from zero-dimensional~0D! states in the cav-
ity, the number of peaks and nodes increases with the in
number of the transmission resonance@1#. This standing
wave pattern has no classical counterpart as the probab
density is anticipated to be uniform in the classical dyna
ics.

When the cavity is much larger thanlF , the standing
wave pattern involves many peaks and nodes. As a co
quence, one may expect thatucu2 is uniform on length scales
larger thanlF . In contrast to this expectation, the probabili
density is often characterized by a large scale structure@2#.
This quantum eigenstate pattern, which evolves out of
large degree of freedom of the system, arises asucu2 is en-
hanced near classical regular orbits@3,4#.

When an isolated cavity is opened to the external envir
ment, the 0D levels are nonuniformly broadened in ener
States that couple strongly to the leads are strongly bro
ened, while those that couple only weakly are not. If t
transport properties reflect the fluctuations in the density
states~DOS!, the orbits that correspond to those states of
cavity that survive the introduction of external coupling m
give rise to measurable transport signatures. Recently, it
become possible to experimentally investigate the quan
transmission properties in ballistic cavities@5–7#. A Fourier
analysis of magnetoconductance fluctuations, which a
from the quantum interference effects, has revealed that
spectrum is dominated by a small number of frequency co
ponents, i.e., the conductance fluctuations are quasiper
@7#. The wave-function scarring has been speculated to
associated with this quasiperiodic nature of the conducta
fluctuations @5#. However, it has remained unclear whic
regular orbit emerges as a ‘‘scar’’ pattern. To explain t
wave-function scarring, it was proposed that the quantu
PRE 621063-651X/2000/62~4!/4804~5!/$15.00
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mechanical injection of electrons into the cavity allows on
a few cavity states to be excited because of the collima
effect @8,9#.

In this paper, we demonstrate that only one or a few re
lar orbits can be strongly excited even when the coupling
the cavity with the leads is classical. The exclusive excitat
of specific orbits originates from sticking in the mixed pha
space of chaotic dynamics. It is important to recognize
fact that there are two classes of chaotic dynamics, nam
hyperbolic and nonhyperbolic. In the hyperbolic case,
classical trajectories are unstable and the probabilityP(t) of
an electron remaining in the cavity for a time longer that
decays exponentially witht. In the nonhyperbolic case, th
classical phase space contains stable orbits and the prob
ity distribution is given by a power law. The classical sca
tering associated with the cavity geometries that are typic
employed in experiments is hyperbolic when the elect
confinement is by hard walls. However, it is nonhyperbo
in soft-wall cavities. In experimental situations, the classi
dynamics is more likely nonhyperbolic than hyperbolic b
cause of the inevitability of softening of confinement pote
tials in gate-defined devices. In addition, the magnetic fie
which is applied to induce the conductance fluctuations,
give rise to a mixed phase space. We show that the sca
wave-function pattern at the transmission resonance is n
ing but the stable orbits that are favored by the underly
classical dynamics.

Ketzmerick@10# has investigated the statistical properti
of the conductance fluctuations. It was shown using a se
classical approximation that the fluctuations in cavities w
a mixed phase space are fractal. We demonstrate that
vidual features of the conductance fluctuations are dire
related to regular orbits.

We first examine the classical dynamics in a soft-w
cavity to demonstrate the strong excitation of stable orb
@11#. We employ a cavity potential, the boundary of which
the Fermi level is given by

yB~x!56~W/8!@31 cos~2px/L !# ~ uxu,L/2!, ~1!

whereW and L are the width and the length of the cavit
The plus and minus signs refer to the upper and low
4804 ©2000 The American Physical Society
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boundaries, respectively. The cavity is connected at each
to a lead with widthW/2. We assume parabolic walls o
width W/4, unless stated otherwise. Throughout this pap
we chooseL51.4W.

Figure 1 showsP(t) and the probabilityP(A) that the
area enclosed by the trajectories is larger thanA. Here,t and
A are normalized byt05L/vF , with vF being the Fermi
velocity, andA05LW, respectively. For soft confinemen
P(t) exhibits a power-law behavior with the expone
21.6. In the presence of a magnetic fieldB, the dynamics is
modified to be more regular. Consequently,P(t) deviates
from the power-law behavior for short trajectories@12#.
However, the exponent for long trajectories remains alm
unchanged. Despite the power-law behavior ofP(t), P(A)
at B50 decays exponentially withA. This is plausibly be-
cause of the wide lead, which enlarges the volume of dir
trajectories in phase space. However,P(A) is given by a
power law as soon as the direct trajectories are suppre
for B/B05W/r c.0.05, where B05mvF /eW and r c
5mvF /eB is the cyclotron radius. The exponent is aga
nearly independent ofB and almost identical to that ofP(t).
The rapid achievement of the power law inP(A) suggests
that the lead alignment is not crucial for the chaotic dyna
ics except atB50 or, perhaps, when the collimation is e
ceptionally strong. Short trajectories, however, are sign
cantly influenced by the lead configuration.

In Fig. 2~a!, we show the Poincare´ surface of section a
B51.4B0. In constructing the Poincare´ map, we keep the
chaotic cavity open to retain the experimental situation.
inject a large number of electrons from the left-hand s
lead. The values ofvx andx when the electrons cross they
50 line with vy.0 are indicated by the points. Cons
quently, true regular orbits do not show up in our plot. T
phase space consists of stochastic seas and islands filled
periodic and quasiperiodic orbits. These so-cal
Kolmogorov-Arnol’d-Moser~KAM ! orbits are stable and th
existence of the islands is believed to be responsible for
power-law probability distributions@13#. When the cavity is
formed by a hard wall, the probability of electrons pursui

FIG. 1. ProbabilityP(t) of electrons staying in a cavity with
L51.4W for a time longer thant and probabilityP(A) of the en-
closed area being larger thanA. Here,t05L/vF andA05LW. The
probability distributions atB50 and 2B0 are shown by the solid
and dashed lines, respectively. The dotted line showsP(t) in a
hard-wall cavity atB50. The thin solid line shows that the powe
law exponent isb51.6.
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long trajectories typically diminishes exponentially. How
ever, the electrons in the soft-wall cavity spend a long ti
in the vicinity of the stable orbits because of the stickiness
the hierarchical phase space structures. The dwell time
comes longer when the trajectories in the phase space
closer to the KAM orbits@14#. The large dwell time of the
trapped trajectories is essential for the power-law probab
distributions.

Classical leads, in principle, couple with orbits in the ca
ity with a uniform probability. Therefore, the quantum
mechanical injection of electrons from a narrow lead w
speculated in Ref.@8# to be the mechanism for a preferenti
excitation of a small number of regular orbits. However, t
selective excitation of regular orbits takes place even w
classical leads as incident electrons are trapped around t
orbits, as we show below. As is evident in Figs. 2~b!–2~d!,
many long trajectories exhibit the same orbit pattern. U
ally, several stable orbits are found to coexist whenr c.W.
For example, the trajectory in Fig. 2~e! is trapped to anothe
stable orbit. The regular orbit in Fig. 2~e! may be regarded a
a mixture of the stable orbit in Fig. 2~d! and its mirror-
reflected image with respect tox50, which is also a stable
orbit in the cavity. However, the Poincare´ map reveals that
the two trajectories are rather distinct stable orbits. In F
2~a!, the contributions by the trajectories shown in Figs. 2~d!
and 2~e! are presented by the filled and open circles, resp
tively. Clearly, the two trajectories are attracted to differe
phase space structures.

We now turn our attention to the quantum transport pro
erties in the cavity. Figure 3 shows the conductance of
cavity as a function of\vc /EF , where vc5eB/m is the
cyclotron frequency. The conductance is related to the tra

FIG. 2. ~a! Poincare´ surface of section atB51.4B0. The points
representvx andx when a trajectory crosses the horizontal symm
try line with vy.0. The contributions by the trajectories shown
~d! and~e! are indicated by the filled and open circles, respective
The long trajectories witht/t0536, 88, and 274 that are shown
respectively, in~b!–~d! circulate in the vicinity of an identical orbit.
The trajectory in~e!, with t5358t0, sticks to another regular orbit
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4806 PRE 62Y. TAKAGAKI AND K. H. PLOOG
mission probabilities between the leads by the Landauer
mula. We have calculated the transmission probabilities
ing the lattice Green’s function technique@15#. The cavity
potential within a width of 1.4W is simulated by a squar
lattice having 160 transverse lattice sites. The parabolic
tential outside the cavity boundary defined byyB is hence
taken into account. The Fermi energy is chosen such tha
lead contains 11 occupied modes.

The semiclassical theory of Ketzmerick@10# predicts that
the conductance fluctuations are fractal when the probab
distributions are given by a power law. AsP(A) in Fig. 1
obeys a power law, the conductance fluctuations in Fig. 3
expected to be fractal. We show the result of a modifi
box-counting analysis in the inset of Fig. 3. The number
‘‘boxes’’ N is evaluated as follows. We divide the magnet
field range with an intervalD(\vc /EF). The difference of
the maximum and minimum conductance values within
interval is added over the segments. The sum divided
D(\vc /EF) is regarded asN. One indeed finds that the con
ductance fluctuations are fractal over at least one orde
magnitude ofB. ~The lower bound might have been impos
by the limited number of data points.! The fractal behavior
manifests that the tight-binding lattice is fine enough to
amine the chaotic classical dynamics in the cavity. We
tain a fractal dimensionD51.56. It has been derived thatD
is related to the power-law exponent ofP(A) (}A2b) as
D522b/2 @10#. This relation expects the fractal dimensio
to be 1.2, which is considerably smaller than the value fou
in the quantum-mechanical calculation. In Ref.@11#, a simi-
lar discrepancy was observed in a simulation using a squ
like cavity. If the magnetic-field range for the fractal analys
is too wide, the classical dynamics may be fundament
altered, resulting in a variation ofb with the magnetic field,
although the numerical result in Fig. 1 indicates that this
unlikely to be the case. To be confident about the estimat
D, we also carried out the fractal analysis using a restric
magnetic-field range. The fractal dimension was confirm
to be independent of the magnetic field. At present, the
gin of the disagreement is not understood.

For the transmission resonances labeled a–d in Fig. 3

FIG. 3. Magnetoconductance of the soft-wall cavity whenL
520lF . The dashed and dotted lines indicate magnetic fie
whereB/B051.4 and 2, respectively. Inset: Fractal analysis of co
ductance fluctuations using a modified box-counting algorithm. T
solid line manifests the power-law behavior, giving the fractal
mensionD51.56.
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show in Fig. 4 gray-scale plots of the local DOS

r~r !52p21Im G1~r ,r ;EF!, ~2!

whereG1(E)5(E2H1 i e)21 is the retarded Green’s func
tion with H being the Hamiltonian of the system. Below th
gray-scale plot, a typical long trajectory at each correspo
ing magnetic field is shown. The characteristic features in
quantum probability density and the stable orbit resem
each other with a remarkable accuracy. It is thus appa
that the wave-function pattern at the transmission resona
is closely associated with the underlying classical dynam

The correspondence may provide a semiclassical inter
tation of the transmission resonance. In chaotic dynam
P(A) is a smooth function ofA. Hence, there is no specia
enclosed area that can explain the appearance of the t
mission resonance at certain magnetic fields. However,
stable orbits may play an important role provided that lo
trajectories dominate the transport characteristics. It is s
gested that the transmission resonance takes place whe
stable orbit satisfies Bohr and Sommerfeld’s~BS! quantiza-
tion rule. Fromholdet al. @16# demonstrated that quantum
numbers can be assigned to the scar patterns in reso
tunneling diodes using the quantization rule. The trajecto
that follow a stable orbit with various revolutions satisfy th
BS quantization condition simultaneously. The quantum
terference effects will lead to a profound influence of t
stable orbits in determining the conductance. We note
the width of the transmission resonance is given by
strength of the coupling between the states in the cavity
the lead, and so it depends on the position of the leads w
respect to the stable orbit@1#.

s
-
e
-

FIG. 4. Local density of statesr(r ) in the cavity shown in gray
scale. ~a!–~d! correspond to the transmission resonances labe
a–d in Fig. 3, respectively. A classical trajectory trapped to a sta
orbit at each magnetic field is shown underneath.
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Due to the symmetric cavity geometry, the quantu
eigenstate pattern in our system has to fulfill the symme
Therefore, it may seem that asymmetric stable orbits, like
one in Fig. 2~d!, do not give rise to a scarlike feature. How
ever, a quantum eigenstate can be produced by a super
tion of the asymmetric stable orbit and all of its mirror r
flections as all the orbits satisfy the BS quantization rule
the same time.

Our result supports the idea proposed by Markuset al. @5#
that the wave-function scarring and the quasiperiodic c
ductance fluctuations have a common origin. As the pr
ability density reveals pronounced scarring only at transm
sion resonances, it was argued by Zozoulenkoet al. @9,17#
that the scarring is unlikely to cause the quasiperiodic
However, as the scarlike feature arises from the stable o
of the underlying classical dynamics, its implication is n
restricted to some magnetic fields. Moreover, the stable
bits vary with magnetic field rather gradually, and so the
quantization rule is fulfilled in a fairly periodic manner.

When the probability distribution decays exponential
all regular orbits are unstable and there are no KAM isla
@13#. Hence, the regular orbits in hard-wall cavities are u
ally unable to trap electrons that pass around them.~A power
law can be realized in some hard-wall cavities as shown
the dotted line in Fig. 1.! Most of the numerical studies o
the cavity conductance reported so far@6,8,9# assumed hard
wall confinements. This is probably the reason that the s
ring in square@6,9# and stadium-shaped@8,18# cavities was
observed only in relatively high magnetic fields. In partic
lar, without a substantial smooth potential, the probabi
distributions in squarelike cavities are rigidly exponenti
By applying a magnetic field, the probability distribution
can be transformed from an exponential behavior to a pow
law behavior@12#. The scarring found in Refs.@8# and @9#
may originate from the trapping to hierarchical phase sp
structures induced by the magnetic field. In our system, w
developed scarlike patterns are found for all the transmis
resonances, and they are unambiguously identified with
stable orbits. In fact, the scarlike features can be recogn
even for magnetic fields away from the resonance. In ana
ing conductance fluctuations to compare with experime
one has to clarify whether the classical dynamics induces
power-law or the exponential probability distribution.

In classical dynamics, only a small portion of incide
electrons travel along the long trajectories. In addition,
probability for these electrons to exit the cavity through
particular lead barely changes with a small change inB.
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Therefore, the stable orbits produce a background variat
and the influence of the characteristic phase space struc
of chaotic dynamics is negligible in the billiard model@19#.
The phase space structures have been assumed to be th
gin of hierarchical repetitions of magnetoconductance fl
tuations that were observed experimentally in Sinai billia
@20#. However, no theory has succeeded in reproducing
experimental finding@11#. We emphasize that soft bounda
potentials are inevitable in devices defined by Schot
gates. Instead of the hierarchical phase space struct
stable orbits that may have resulted from the soft confi
ment and/or the magnetic field might provide an explanat
for the self-similar fluctuations.

In high magnetic fields, both the local DOS and the sta
orbit show a circular pattern. High-magnetic-field measu
ments of the conductance are often used to infer the ca
size. The interpretation of the edge state as an orbit skipp
along the boundary is readily justified whenr c is much
smaller than the cavity size. Our simulation indicates that
edge state is established in a soft-wall cavity even when
magnetic field is not very high. Therefore, the onset
Aharonov-Bohm~AB! conductance oscillations can be si
nificantly lower than expected in the skipping orbit pictur
In our cavity geometry, the stable orbit bears a loop sh
for B>2B0. We find that the area covered by the chao
trajectories in this regime is nearly independent of the m
netic field, although it is slightly extended toward the lea
in high fields. Thus, the period of the AB oscillation is e
pected to depend rather weakly on the magnetic field.

In conclusion, we have investigated chaotic trajector
and wave functions in a cavity defined by a smooth confi
ment potential. The underlying classical dynamics selec
few regular orbits, to which long trajectories are trapped. T
characteristic pattern of the wave function at quantum tra
mission resonances is found to be identical to these st
orbits, resolving the question of which regular orbit is chos
as the scarlike pattern of a transmission resonance. The e
match evidences the self-control of the cavity dynami
which is in contrast to the popular view that it is driven b
the leads. The correspondence allows us to interpret the
siperiodicity of magnetoconductance fluctuations in ballis
cavities in terms of the stable orbits rather than the scarr
As the stable orbits are present irrespective of the magne
field value, the interpretation based on classical dynamic
applicable to a wider range of issues in comparison to
scarring effect.
.

s.

lin,

ird,
@1# Y. Takagaki and D.K. Ferry, J. Phys.: Condens. Matter5, 1975
~1993!.

@2# E.J. Heller, Phys. Rev. Lett.53, 1515~1984!.
@3# L. Kaplan and E.J. Heller, Ann. Phys.~N.Y.! 264, 171~1998!.
@4# S. Tomosovic and E.J. Heller, Phys. Rev. Lett.70, 1405

~1993!; O. Agam and S. Fishman,ibid. 73, 806 ~1994!; L.
Kaplan, ibid. 80, 2582~1998!.

@5# C.M. Markus, A.J. Rimberg, R.M. Westervelt, P.F. Hopkin
and A.C. Gossard, Phys. Rev. Lett.69, 506 ~1992!.

@6# J.P. Bird, R. Akis, D.K. Ferry, Y. Aoyagi, and T. Sugano,
Phys.: Condens. Matter9, 5935~1997!.
@7# J.P. Bird, R. Akis, D.K. Ferry, D. Vasileska, J. Cooper, Y
Aoyagi, and T. Sugano, Phys. Rev. Lett.82, 4691~1999!.

@8# R. Akis, D.K. Ferry, and J.P. Bird, Phys. Rev. Lett.79, 123
~1997!; R. Akis, D.K. Ferry, J.P. Bird, and D. Vasileska, Phy
Rev. B60, 2680~1999!.

@9# I.V. Zozoulenko, R. Schuster, K.-F. Berggren, and K. Enss
Phys. Rev. B55, 10 209~1997!; I.V. Zozoulenko and K.-F.
Berggren,ibid. 56, 6931~1997!.

@10# R. Ketzmerick, Phys. Rev. E~to be published!.
@11# Y. Takagaki and K.H. Ploog, Phys. Rev. B61, 4457~2000!.
@12# Y. Takagaki, M. ElHassan, A. Shailos, C. Prasad, J.P. B



.

J
ol-
ly,

4808 PRE 62Y. TAKAGAKI AND K. H. PLOOG
D.K. Ferry, K.H. Ploog, L.-H. Lin, N. Aoki, and Y. Ochiai,
Phys. Rev. B~to be published!.

@13# J.D. Meiss and E. Ott, Phys. Rev. Lett.55, 2741~1985!.
@14# G.M. Zaslavsky, D. Stevens, and H. Weitzner, Phys. Rev

48, 1683~1993!.
@15# D.S. Fisher and P.A. Lee, Phys. Rev. B23, 6851 ~1981!; T.

Ando, ibid. 44, 8017~1991!.
@16# T.M. Fromhold, P.B. Wilkinson, F.W. Sheard, L. Eaves,

Miao, and G. Edwards, Phys. Rev. Lett.75, 1142~1995!.
E

.

@17# I.V. Zozoulenko and T. Lundberg, Phys. Rev. Lett.81, 1744
~1998!.

@18# K. Nakamura and H. Ishio, J. Phys. Soc. Jpn.61, 3939~1992!.
@19# C.W.J. Beenakker and H. van Houten, Phys. Rev. Lett.63,

1857 ~1989!; M.L. Roukes and O.L. Alerhand,ibid. 65, 1651
~1990!.

@20# R.P. Taylor, R. Newbury, A.S. Sachrajda, Y. Feng, P.T. C
eridge, C. Dettmann, N. Zhu, H. Guo, A. Delage, P.J. Kel
and Z. Wasilewski, Phys. Rev. Lett.78, 1952~1997!.


